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Rotating Boussinesq convection in a plane layer is governed by two dimensionless
groups in addition to the Rayleigh number R: the Prandtl number σ and the Taylor
number Ta . Scaled equations for fully nonlinear rotating convection in the limit of
rapid rotation and small Prandtl number, where the onset of convection is oscillatory,
are derived by considering distinguished limits where σnTa1/2 ∼ 1 but σ → 0 and
Ta →∞, for different n > 1. In the resulting asymptotic expansion in powers of Ta−1/2

the leading-order equations, which are independent of n, are solved to provide an
analytic description of fully nonlinear convection. Three distinct asymptotic regimes
are identified, distinguished by the relative importance of the subdominant buoyancy
and inertial terms. For the most interesting case, n = 4, the stability of different
planforms near onset is investigated using a double expansion in powers of Ta−1/8

and the amplitude of convection ε. The lack of a buoyancy term at leading order
demands that the perturbation expansion be continued through six orders to derive
amplitude equations determining the dynamics. The case n = 1 is also analysed. The
relevance of this theory to experimental results is briefly discussed.

1. Introduction
Rotating thermal convection is a process of great geophysical and astrophysical

importance. Even in idealized settings, solving the equations of motion is a complex
task usually attempted either numerically or by an expansion in terms of a small
parameter, for example the amplitude of the convective motion. Low Prandtl number
convection is particularly relevant to some astrophysical situations: these may involve
fluids with Prandtl numbers as low as 10−8. It is also relevant to convection in liquid
metals, where typical Prandtl numbers are in the range 10−3 to 10−2. Asymptotic
analyses of non-rotating convection in the limit of small σ have been performed
by Proctor (1977) and Busse & Clever (1981) in response to the two-dimensional
numerical simulations of Jones, Moore & Weiss (1976) and Clever & Busse (1981).
The motion is dominated by inertial forces, and the analytic results agree well with the
experimental results on non-rotating convection in mercury (σ ≈ 0.025) obtained by
Rossby (1969). The analysis of Proctor (1977) shows a second feature of non-rotating
low Prandtl number convection which has been confirmed by experimental results
(Kek & Müller 1993): the Nusselt number increases very little above the critical
Rayleigh number Rc for the onset of convection until a second critical Rayleigh
number R2 > Rc (Busse & Clever 1981) is reached. For R > R2 the heat transfer
increases much more rapidly; there is a break in the slope of the Nu–R curve.
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Convection in the limit of rapid rotation (with σ ∼ 1) has been investigated by
many authors: Chandrasekhar (1961) noted the scalings of the critical wavenumber
and Rayleigh number for the onset of convection when the Taylor number (the non-
dimensionalized rotation rate) Ta is large. The later work of Bassom & Zhang (1994)
has been built upon by Julien & Knobloch (1997, 1999) who derive scaled equations
in the limit of rapid rotation and explore the vertical structure of the flow, the heat
transport through the layer, and three-dimensional pattern selection near onset.

In this paper we examine composite limits of rapid rotation and small Prandtl
number. It is well known that when the Prandtl number σ < 0.677 and the Taylor
number exceeds a critical value Tac(σ), which depends on whether rigid or stress-free
vertical boundary conditions are employed, the onset of convection in an infinite
plane layer is oscillatory. As σ becomes small, though, it is apparent that different
scalings to those used when σ ∼ 1 and Ta →∞ may become important. We examine
those scalings here. In particular we show how the results of Zhang & Roberts (1997)
and Bassom & Zhang (1998) complement those of Julien & Knobloch (1999), and
find an intermediate scaling which explains the behaviour of stability boundaries seen
in a study of pattern selection at finite Taylor number by Dawes (2000). Physically
the leading-order equations describe the balance between the fast oscillation of the
convection and rotation: a linear balance leading to a linear momentum equation at
leading order if the horizontal structure of the flow is sufficiently simple. This is in
sharp contrast to non-rotating low Prandtl number convection where the nonlinear
inertial term u · ∇u balances the pressure term at leading order.

In § 2 we analyse the linear stability results for convection between stress-free
boundaries. In these distinguished limits the choice of stress-free or rigid boundaries
above and below the layer becomes unimportant; this is shown in § 3 by extending
the work of Clune & Knobloch (1993) and Niiler & Bisshopp (1965) to the present
case. Section 4 contains the derivation of the scaled equations and shows that
the asymptotics indicate three distinct asymptotic regimes. In § 5 the leading-order
equations (which are the same for each regime) are solved exactly for fully nonlinear
convection, giving analytic expressions for the mean temperature profile and the
Nusselt number. Section 6 then concentrates on the most interesting regime and
applies modified perturbation theory to determine pattern selection at onset. In § 7 we
comment on and extend the similar results obtained by Bassom & Zhang (1998). In
§ 8 we compare our results with the experiments of Rossby (1969) and Pfotenhauer,
Lucas & Donnelly (1984), and with the numerical simulations of Julien, Knobloch &
Werne (1998). Conclusions and directions for further work are presented in § 9.

2. Linear theory and scalings
The governing equations for rotating Boussinesq convection are

1

σ

Du

Dt
+ E−1ẑ × u = −∇p+ RT ẑ + ∇2u, (2.1)

DT

Dt
= ∇2T , (2.2)

∇ · u = 0, (2.3)

for the velocity field u = (ux, uy, uz) and temperature profile T . The equations have
been non-dimensionalized with respect to the thermal diffusive timescale d2/κ. The
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dimensionless groups appearing in (2.1) and (2.2) are the Ekman, Rayleigh and
Prandtl numbers:

E = Ta−1/2 =
ν

2Ωd2
, R =

α̂g∆Td3

νκ
, σ =

ν

κ
, (2.4)

where ∆T is the imposed temperature difference across the layer, Ω is the dimensional
rotation rate, d is the layer depth, α̂ is the coefficient of volume expansion and ν,
κ and g are constants describing the kinematic viscosity and thermal diffusivity of
the fluid, and the acceleration due to gravity. In non-dimensional terms the layer
occupies the region 0 6 z 6 1. Solving the linearized versions of (2.1) and (2.2) about
the conduction solution u = 0, T = 1 − z in conjunction with ‘perfect’ boundary
conditions (fixed temperature and stress-free vertical boundaries at z = 0,1 and
periodic in the horizontal) we derive analytic expressions for the critical Rayleigh
number Rc, frequency ωc and preferred wavenumber αc at the onset of oscillatory
convection:

Rc =
2σ2π2Ta

α2
c(σ + 1)

+
2(π2 + α2

c)
3(σ + 1)

α2
c

,

ω2
c = (π2 + α2

c)
2

[
−σ2 +

σ2(1− σ)π2Ta

(σ + 1)(π2 + α2
c)

3

]
,

(π2 + α2
c)

2(σ + 1)2(2α2
c − π2) = σ2π2Ta . (2.5)

This last equation is the result of minimizing Rc over all wavenumbers αc. If the
right-hand side of (2.5) becomes large, so too will the preferred wavenumber of
convection. This clearly happens in the limit Ta → ∞ with σ ∼ 1. Here we consider
the limit of small σ at the same time by fixing

σ = sE1/n, equivalently, σnTa1/2 = sn, (2.6)

with s an O(1) constant, for values of n in the range 1 < n < ∞. With this scaling, in
the limit E → 0 we find the following asymptotic expressions for Rc, ωc and αc (using
the wavenumber which minimizes Rc):

Rc = 3(2s4π4)1/3E4γ ≡ R̃E4γ, (2.7)

ω2
c = (2s4π4)1/3E4γ ≡ ω̃2E4γ, (2.8)

αc =
(s2π2

2

)1/6

Eγ ≡ α̃Eγ, (2.9)

where

−1

3
< γ ≡ 1

3

(1

n
− 1
)
< 0. (2.10)

The case n = 1 has been partially investigated by Zhang & Roberts (1997) and
Bassom & Zhang (1998). We exclude it here (and defer analysis to § 7) because it
is clear from equation (2.5) that the critical wavenumber remains O(1) in this limit:
it does not become large. Setting n = ∞, γ = −1/3 corresponds to the analysis of
Julien & Knobloch (1999); differences between this and the analysis for finite n are
highlighted in subsequent sections. Using a poloidal-toroidal decomposition for the
velocity field u:

u = ∇× φẑ + ∇× ∇× ψẑ =
(
∂yφ+ ∂x∂zψ,−∂xφ+ ∂y∂zψ,−∇2

Hψ
)
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the governing equations become

1

σ
∂t∇2

Hφ− E−1∂z∇2
Hψ +

1

σ
Nφ(φ, ψ) = ∇2∇2

Hφ, (2.11)

1

σ
∂t∇2∇2

Hψ + E−1∂z∇2
Hφ+

1

σ
Nψ(φ, ψ) = ∇4∇2

Hψ − R∇2
HT , (2.12)

∂tT +NT (φ, ψ, T ) = ∇2T , (2.13)

where the functions Ni represent the nonlinear terms:

Nφ(φ, ψ) = (ω · ∇)uz − (u · ∇)ωz, (2.14)

Nψ(φ, ψ) = ẑ · ∇× ∇× (ω× u), (2.15)

NT (φ, ψ, T ) = u · ∇T , (2.16)

and the horizontal part of the Laplacian ∇2
H ≡ ∂2

xx + ∂2
yy . Complete expressions for

these nonlinear terms are given in Appendix A.

3. Boundary conditions in the limit E → 0

In the limit (2.6) the linear stability problem with rigid vertical boundaries becomes
identical to that for stress-free boundaries. This strongly suggests, as noted by Clune
& Knobloch (1993), that subsequent nonlinear calculations (for example, to determine
pattern selection) will yield identical results in the two cases. For this section only we
will (for computational convenience) fix the layer to lie in the region −1/2 6 z 6 1/2.
To analyse the linear stability problem of the trivial solution to (2.11)–(2.13) we write
T = 1/2− z+ θ and derive an evolution equation for θ the departure from the linear
temperature profile. We assume the solution ansatz

φ

ψ

θ


=



3∑
j=0

Aj
σTa1/2λj(λ

2
j − α2 − iω)

α2[iω − σ(λ2
j − α2)]

sinh λjz

cosh λj/2

3∑
j=0

Aj
α2 + iω − λ2

j

α2

cosh λjz

cosh λj/2

3∑
j=0

Aj
cosh λjz

cosh λj/2


eiαx+(r+iω)t (3.1)

which satisfies the governing linearized equations. The linearized equations result in
a matrix determinant that must vanish for a non-zero solution for the constants
Aj to be possible. At marginal stability (r = 0) this condition yields a polynomial
P (λ) = σ2λ8 +B3λ

6 +B2λ
4 +B1λ

2 +B0 which has roots ±λj , j = 0, . . . , 3. The complex
coefficients B0, . . . , B3 are functions of σ, E, R, α and ω. From these we calculate the
asymptotic form of the roots ±λj of P (λ): only ±λ1 remains finite.

The no-slip boundary conditions

θ = ∂zψ = φ = ψ = 0 at z = ± 1
2

(3.2)

provide four linear constraints involving the quantities βj = λj tanh(λj/2). These
constraints imply that β1 →∞ in the limit (2.6), but λ1 remains finite. Hence λ1 must
tend to a multiple of iπ as E → 0, and solving β1 = λ1 tanh λ1/2 for λ1 (taking the
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most unstable mode, corresponding to λ1 = −π2) we find

λ1 = iπ

(
1 +

is
√

2

ω̃
Eγ+1/2

)
(3.3)

so that there is an O(1) contribution from the eigenvalue for the stress-free boundary
case, and the other eigenvalues alter the vertical structure only in thin boundary layers
near z = ±1/2. This calculation does not hold in the case n = 1, as discussed by
Zhang & Roberts (1997): for n = 1 the analogous analysis leading to the asymptotic
forms of the roots of P (λ) shows that as E → 0 two pairs of eigenvalues remain O(1)
and the vertical structure does not simplify to the sinusoidal solution for stress-free
boundaries, see Appendix B.

What is particularly novel about (3.3) is that the rate of convergence to the
asymptotic regime varies greatly with γ. Since −1/3 < γ < 0, the correction term to
λ1 is between O(E1/6) and O(E1/2) and the asymptotic regime is reached at larger
values of E (smaller values of Ta) when γ is close to zero (n close to 1). However, the
scaling analysis of § 4 indicates that the corrections to the leading-order equations are
minimized when n = 4. In this case the correction term to (3.3) is O(sE1/4) = O(σ),
indicating a fast rate of convergence to the asymptotic regime when σ � 1.

4. The scaled equations
Using the asymptotic relationships (2.7)–(2.9) we rescale the Rayleigh number R,

lengths in the horizontal directions x and y, and time t to select the most unstable
modes of convection. Let R′ = E−4γR, (x′, y′) = Eγ(x, y) and t′ = E2γt, then

(∂x, ∂y) = Eγ(∂x′ , ∂y′), ∂t = E2γ∂t′ .

We expand the temperature profile into horizontally averaged and periodic parts, and
also scale ψ, but not φ. The choices of scalings come from balancing inertial terms,
rotation and the largest nonlinear terms all to appear at leading order:

T = T̄ (z) + E−γθ(x, y, z, t), ψ = E−γψ′. (4.1)

The difference between these scalings and Julien & Knobloch (1999) becomes apparent
on substitution into (2.11) and (2.12). Dropping primes, we obtain

Eγ−1

[
1

s
∂t∇2

Hφ− ∂z∇2
Hψ − 1

s
J[φ,∇2

Hφ]

]
= E4γ∇4

Hφ− E−1M0(φ, ψ) + O(E−γ−1), (4.2)

E2γ−1

[
1

s
∂t∇4

Hψ + ∂z∇2
Hφ− 1

s
∇2
HJ[φ,∇2

Hψ]

]
= E5γ

[∇6
Hψ − R∇2

Hθ
]− Eγ−1M1(φ, ψ) + O(E−1), (4.3)

where M0 and M1 are quadratic nonlinear terms derived from Nφ and Nψ respectively
(see Appendix A) and the horizontal Jacobian J[ f, g] ≡ ∂xf∂yg−∂yf∂xg. For all values
of γ the leading-order terms in the square brackets on the left-hand side of (4.2) and
(4.3) remain the same, but as γ varies, the relative importance of the nonlinear terms
Mi and the diffusion/buoyancy terms on the right-hand side changes. The temperature
equation (2.13) yields a further two equations, at O(Eγ) and (after integration over
one period in each horizontal direction and in time, denoted by an overbar) at O(1):

∂tθ − ∇2
Hψ∂zT̄ − J[φ, θ] = ∇2

Hθ, (4.4)
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n γ Ordering Regime

∞ −1/3 Eγ−1 ∼ E4γ � E−1 Julien & Knobloch (1999)
4 < n < ∞ −1/3 < γ < −1/4 Eγ−1 � E4γ � E−1 I

4 −1/4 Eγ−1 � E4γ ∼ E−1 II
1 < n < 4 −1/4 < γ < 0 Eγ−1 � E−1 � E4γ III

1 0 Bassom & Zhang (1998)

Table 1. Regimes giving different subdominant balances in the scaled equations (4.2)–(4.5). Referring
to (4.2), the leading-order terms are O(Eγ−1), the next-order nonlinearities are O(E−1) and the
diffusion term is O(E4γ). The relative scalings in (4.3) are identical. Note that in the limit n = 1
(4.2)–(4.5) are not valid.

∂2
zzT̄ + ∂z

[
θ∇2

Hψ
]

= 0. (4.5)

These last two equations are valid for all γ. We distinguish three different asymptotic
regimes, labelled I, II and III, which are summarized in table 1. In regime I the
buoyancy and diffusion terms on the right-hand side of (4.2) and (4.3) are larger
than the nonlinear terms M0 and M1. In regime II, when n = 4 and γ = −1/4,
the diffusive terms exactly balance the nonlinearities although neither set of terms
appears at leading order. When −1/4 < γ < 0 the nonlinearities are larger than the
buoyancy/diffusion terms: this is regime III. From these three cases one important
qualitative distinction about the dynamics can be drawn immediately. The leading-
order terms in (4.2)–(4.5) are invariant under a reflection symmetry which is not
present in the equations at finite Ta and σ. This symmetry

(ψ, φ, θ, T̄ )→ (−ψ,−φ,−θ, T̄ ) (4.6)

corresponds to a reflection in a vertical plane containing the z-axis, for example
(x, y, z)→ (x,−y, z). Physically, the symmetries of rotating convection in the limit (2.6)
are the same as those of non-rotating convection. This extra symmetry was noted by
Julien & Knobloch (1999) in their analysis, and the same degeneracy is introduced
into subsequent weakly nonlinear calculations. The existence of this symmetry has
important consequences for the investigation of pattern selection and the stability of
solutions. However, as we need to go to higher orders in the perturbation expansion
just to derive the critical Rayleigh number for the onset of convection, whether these
higher-order terms also have this reflection symmetry is important. The quadratic
nonlinearities Mi are the only terms in (4.2)–(4.5) that do not obey the symmetry
(4.6): when they are less important than the diffusion/buoyancy terms the degenerate
situation persists at next order in E. When they are of equal or greater importance than
the diffusive terms the symmetry is broken at next order and the flow distinguishes
between co-rotating and counter-rotating perturbations. This is crucial for the analysis
of Küppers–Lortz type instabilities of travelling rolls.

In physical terms (4.2) and (4.3) show that the rotational constraint is balanced by
the fast oscillation of the convecting flow and the velocity field evolves independently
of the temperature field at leading-order. Neither viscous dissipation nor buoyancy
play a leading-order role but they appear at the same higher order; this must be
the case for viscous forces to influence the critical Rayleigh number for the onset
of convection. In this respect the scaled equations are similar to those derived by
Bassom & Zhang (1994): the difference is that the nonlinear terms have been vastly
simplified.
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5. Fully nonlinear solutions at leading order
In this section we investigate fully nonlinear solutions of (4.2)–(4.5). At leading

order
1

s
∂t∇2

Hφ0 − ∂z∇2
Hψ0 =

1

s
J[φ0,∇2

Hφ0], (5.1)

1

s
∂t∇4

Hψ0 + ∂z∇2
Hφ0 =

1

s
∇2
HJ[φ0,∇2

Hψ0], (5.2)

(∂t − ∇2
H )θ0 − ∇2

Hψ0∂zT̄0 = J[φ0, θ0], (5.3)

∂2
zzT̄0 + ∂z

[
θ0∇2

Hψ0

]
= 0, (5.4)

where the subscript 0 indicates that (φ0, ψ0, θ0, T̄0) are thought of as the leading-order
terms in an expansion in powers of E. These equations are to be solved subject to
the boundary conditions ψ0 = 0 at z = 0, 1 (impermeability) and T̄ (0) = 1, T̄ (1) = 0
(fixed temperatures). We adopt the following ansatz :

(ψ0, φ0, θ0) = (A(z), B(z), C(z)) h(x, y)ε−iω0t + c.c. (5.5)

where h(x, y) is a function describing the horizontal planform, and c.c. indicates the
complex conjugate. Fully nonlinear solutions can be found for any planform which
depends only on one horizontal wavenumber, so that ∇2

Hh = −α2h, and in addition
satisfies ∂xh∂yh

∗ = ∂xh
∗∂yh (where ∗ denotes complex conjugation). These conditions

ensure that the Jacobian terms on the right-hand sides of (5.1)–(5.3) vanish identically,
leaving nonlinearities only in the temperature equations. Equations (5.1) and (5.2)
have the solution

A(z) =
A0

α
sin πz, B(z) = iA0 cos πz, ω0 =

πs

α
.

A0 is the undetermined amplitude of convection: at higher orders in the expansion we
will determine its evolution on slower timescales. From (5.3) we obtain an expression
relating C(z) and ∂zT̄0. A second relationship is given by integrating equation (5.4)
once:

∂zT̄0 − αH(CA∗0 + C∗A0) sin πz = −Nu , (5.6)

where the constant Nu is the Nusselt number and H ≡ |h|2. These relations together
yield

Nu =

(
1 +

2Hα4|A0|2
α4 + ω2

0

)1/2

, (5.7)

T̄0(z) =

∫ −(α4 + ω2
0)Nu

α4 + ω2
0 + 2Hα4|A0|2 sin2 πz

dz. (5.8)

This is a fully nonlinear description of the temperature profile – we have not assumed
that the amplitude A0 is small. Equation (5.8) can be integrated to give a fully
nonlinear expression for the mean temperature profile:

T̄0(z) =


1− (1/π) tan−1

P (Nu tan πz) in 0 6 z < 1
2

1
2

at z = 1
2

−(1/π) tan−1
P (Nu tan πz) in 1

2
< z 6 1,

(5.9)
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Mean temperature profile, T0 (z)

Figure 1. The mean temperature profile T̄0(z) at four values of the Nusselt number Nu: Nu = 1
(solid line), Nu = 3 (dashed line), Nu = 10 (dash-dot line), Nu = 100 (dash-dot-dot-dot line).

where tan−1
P (x) is the principal value of tan−1(x): −π/2 < tan−1

P < π/2. Although
it is easiest to define the solution for T̄0(z) piecewise, T̄0(z) is a smooth function
of z, and when Nu = 1 (below the onset of convection) we recover the expected
linear temperature profile T̄0(z) = 1− z. Figure 1 shows the variation in T̄0(z) as Nu
increases. The temperature profile becomes uniform throughout the layer and rapid
adjustment to satisfy the fixed-temperature boundary conditions occurs in thermal
boundary layers near z = 0, 1.

Having obtained a fully nonlinear solution at leading order we lack only a re-
lationship between the amplitude of convection A0 and the (scaled) Rayleigh number
R. This can be derived in the most interesting case (regime II, n = 4, γ = −1/4) by
expanding the velocity and temperature fields in powers of E1/4 and introducing a
new timescale τ = E1/4t:

(φ, ψ, θ, T̄ ) = (φ0, ψ0, θ0, T̄0) + E1/4(φ1, ψ1, θ1, T̄1) + O(E1/2) (5.10)

which gives evolution equations for φ1 and ψ1 (decoupled from θ1 and T̄1):

1

s
∂t∇2

Hφ1 − ∂z∇2
Hψ1 = −M0(φ0, ψ0) + ∇4

Hφ0 − 1

s
∂τ∇2

Hφ0, (5.11)

1

s
∂t∇4

Hψ1 + ∂z∇2
Hφ1 = −M1(φ0, ψ0) + ∇6

Hψ0 − R∇2
Hθ0 − 1

s
∂τ∇4

Hψ0. (5.12)

A solvability condition is applied by multiplying the right-hand sides by the leading-
order solution vector (φ0, ψ0)

T and integrating over one period in the horizontal
and in time, and over the whole layer in the z-direction. If the right-hand sides of
(5.11)–(5.12) are schematically given by (F1, F2)

T then the solvability condition is

F(φ0, ψ0, F1, F2) =

∫ 1

0

∫ 2π/α

0

∫ 2π/α

0

∫ 2π/ω0

0

(
φ0

ψ0

)
·
(
F1

F2

)
dt dx dy dz = 0. (5.13)

There is no resonant contribution from the Mi terms since they contain only quadratic
products of φ0 and ψ0. If A0 evolves at a frequency ω1 on the slow timescale τ, i.e.
A0 = Â0ε

−iω1τ, the resulting non-resonance condition determines both |A0| and ω1:

ω1 = −sω0, 2Hα4|A0|2 = R(Nu − 1).
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Using (5.7) we can eliminate 2Hα4|A0|2 from this expression:

Nu = 2

(
R

Rc

)
− 1, (5.14)

where Rc = 2(α4 + ω2
0) = 2(α6 + s2π2)/α2 is the (scaled) critical Rayleigh number for

the onset of convection, agreeing with (2.7)–(2.9). As both R and Rc have been scaled
by the same factor of E4γ we can replace the scaled R and Rc by the unscaled values
in (5.14). The result is a fully nonlinear Nu–R relationship, assuming that our ansatz
(5.5) holds, independent of the details of the planform. The range of validity of (5.14)
can be estimated as Rc < R < 24/3Rc: above 24/3Rc the vertical structure of solutions
is likely to contain significant contributions from higher frequency modes sinmπz as
these are no longer damped.

We note that the same Nu–R relationship can be derived near onset in regimes I
and III and is implicit in the weakly nonlinear analysis of rapidly rotating steady
convection by Bassom & Zhang (1994).

6. Weakly nonlinear theory for n = 4

From a previous study (Dawes 2000) of pattern selection at finite Ta and σ, two-
dimensional travelling rolls h(x, y) = eiαx are preferred to three-dimensional planforms
close to onset. In this section we compute the stability of a weakly nonlinear travelling
roll solution both to all other possible planforms for oscillatory convection on a square
lattice, and to roll perturbations at arbitrary angles. Regime II (n = 4, γ = −1/4) is
of most interest as not only does it correspond to the subdominant balance between
the nonlinear terms M0 and M1 and the diffusion/buoyancy terms in (4.2)–(4.5), but
the results of Dawes (2000) demonstrate that the stability boundary of travelling rolls
to perturbations at +90◦ to them scales as σ4Ta1/2 = const in the limit of large Ta .
This boundary, and stability boundaries to perturbations at varying angles, can be
analysed using a weakly nonlinear expansion in powers of E1/4 and ε, the amplitude
of convection, assuming that ε� E1/4 � 1. Let

(φ, ψ, θ) =

∞∑
i=0

∞∑
j=1

(φij , ψij , θij)E
i/4εj , (6.1)

T̄ (z) = T̄0 + εT̄0,1 + ε2T̄0,2 + ε3T̄0,3 + E1/4εT̄1,1 + · · · , (6.2)

and introduce a set of slow time variables ti,j = Ei/4εjt so that

∂t → ∂t0 + ε∂t0,1 + ε2∂t0,2 + E1/4∂t1,0 + E1/4ε∂t1,1 + E1/4ε2∂t1,2 + · · · . (6.3)

We now substitute these expansions into the fully nonlinear equations (4.2)–(4.5) and
examine terms at each order Ei/4εj .

6.1. Solutions at O(ε) and O(ε2)

At first order in the expansion we obtain the linear equations

1

s
∂t0∇2

Hφ0,1 − ∂z∇2
Hψ0,1 = 0, (6.4)

1

s
∂t0∇4

Hψ0,1 + ∂z∇2
Hφ0,1 = 0, (6.5)

(∂t0 − ∇2
H )θ0,1 + ∇2

Hψ0,1 = 0, (6.6)
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where we have used the fact that T̄0(z) = 1 − z which was deduced from the
linearization of (4.5) and the boundary conditions. We first assume the following
planform in order to derive amplitude equations to examine the stability of travelling
rolls to oscillatory perturbations in the counter-propagating direction (A2) and at
±90◦ (B1 and B2):

(φ0,1, ψ0,1, θ0,1) =

(
i cos πz,

sin πz

α
,
α sin πz

α2 − iω0

)
h0(x, y)e−iω0t0 + c.c., (6.7)

h0(x, y) = A1e
iαx + A2e

−iαx + B1e
iαy + B2e

−iαy. (6.8)

We also deduce that T̄0,1(z) = 0. This solution to the leading-order problem will be
used, as is common in problems of this type, to impose the solvability condition
F(φ0,1, ψ0,1, F1, F2) = 0 (5.13) at all further orders in the expansion. The solvability
condition does not involve the θ-equation since it decouples from the φ and ψ
equations at order ε.

At second order in ε imposing the solvability condition implies ∂t0,1A1 = 0 as
expected. The equation for the mean temperature indicates that all four modes
contribute equally to its deviation from a linear profile and agrees with the fully
nonlinear result (5.9):

T̄0,2(z) =
−α4 sin 2πz

2π(α4 + ω2
0)

[|A1|2 + |A2|2 + |B1|2 + |B2|2] . (6.9)

6.2. Solution at O(ε3)

At third order we anticipate that use of the solvability condition will enable deduction
of an amplitude equation describing the slow-time evolution of A1. After applying
the solvability condition we obtain a nonlinear evolution equation for A1:

∂t0,2A1 =
iα4

4ω0

A1

(|B1|2 + |B2|2) . (6.10)

This equation, since the coefficient is purely imaginary, describes the nonlinear change
(due to B1 and B2) in only the phase of A1, not its modulus. There is no linear term
because it would depend on the distance R − Rc above the critical Rayleigh number
for the onset of convection, and R−Rc only appears at order E1/4ε3 in the expansion.
There are also no terms A1|A1|2 or A1|A2|2 since the Jacobian terms vanish for terms
which have no dependence on the y coordinate. To obtain an evolution equation
involving coefficients which have real parts (from which we can extract stability
information) we must proceed to higher orders with the calculation.

6.3. Solutions at O(E1/4ε) and O(E1/4ε2)

We expand the Rayleigh number R = Rc + ε2R2 + · · · anticipating that there is no ε
term because the amplitude of convection scales as the square root of the distance
above onset. We also do not compute higher-order terms in the θ or T̄ equations as
the solvability condition (5.13) depends only on the φ and ψ equation at each order.
At O(E1/4ε), after applying the solvability condition, we obtain expressions for the
evolution of A1 on the timescale t1,0 and the critical Rayleigh number Rc:

∂t1,0A1 = isω0A1 and Rc = 2(α4 + ω2
0). (6.11)

Hence A1 = Â1e
−iω1t1,0 where ω1 = −sω0 (we drop the carat on Â1 at higher orders).

These results agree with the fully nonlinear analysis of § 5. As the equations at this
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order are linear we can, without loss of generality, set φ1,1 = ψ1,1 = 0 as any non-zero
solution could be removed by redefining E.

At O(E1/4ε2) the nonlinear terms M0 and M1 (given explicitly in Appendix A) enter
the equations. From applying the solvability condition we deduce that ∂t1,1A1 = 0.

6.4. Solution at O(E1/4ε3)

Finally we arrive at the order where it is possible to derive a more informative
amplitude equation for the evolution of A1, on the slow timescale t1,2. By computing
the nonlinear terms at this order and applying the solvability condition we derive
equations (related by symmetry) of the form

∂t1,2A1 = A1[ µ+ a|A1|2 + b|A2|2 + c|B1|2 + d|B2|2] + eA∗2B1B2 (6.12)

for the evolution of each of A1, . . . , B2; see Knobloch & Silber (1992). The complex
coefficients are calculated to be

µ = R2(α
2 + iω0), (6.13)

a = b = −α4(α2 + iω0), (6.14)

c = − [5s2π2α2 + 3α8 + 4α3π2 − 4isπα(α4 + π2)
]

(α2 + iω0)/4ω
2
0 , (6.15)

d = − [5s2π2α2 + 3α8 − 4α3π2 − 4isπα(α4 − π2)
]

(α2 + iω0)/4ω
2
0 , (6.16)

after rescaling t1,2 by a factor of 2(α4 + ω2
0)/s. The value of e is not needed to

determine the stability of travelling rolls. We note first that travelling rolls bifurcate
supercritically as ar < 0 for all s (a subscript r denotes the real part of a quantity).

A travelling roll solution |A1|2 = −µr/ar is stable to perturbations in the other
three modes if the three quantities

(ar − br)/ar, (ar − cr)/ar, (ar − dr)/ar (6.17a–c)

are all negative (Knobloch & Silber 1992). As also found by Julien & Knobloch
(1999), (6.17a) is zero, meaning that the relative stability of travelling rolls and
standing rolls |A1|2 = |A2|2 = −µr/(ar + br) is determined at a yet higher order in the
perturbation theory. However, from calculations at finite Taylor number by Dawes
(2000), and the discussion in § 7 below, we can assert confidently that travelling rolls
are stable with respect to standing rolls. What is not clear is whether travelling
rolls are stable to perturbations in the B modes. Figure 2(a) shows the variation in
(6.17b, c) with s. When s < scrit = 2.361, travelling rolls are unstable to perturbations
at +90◦. The quadratic terms M0 and M1 are responsible for the difference in stability
to perturbations at +90◦ and −90◦ and the corresponding sign differences in the
expressions for c and d, (6.15)–(6.16). In the simple limit Ta → ∞ with σ ∼ 1 which
was analysed by Julien & Knobloch (1999), the coefficients c and d are forced to be
equal at leading order by the ‘unwanted’ reflection symmetry (4.6).

6.5. Stability to perturbations at smaller angles

Since the perturbations to travelling rolls which have the highest growth rate may not
be those at 90◦, but instead at some smaller angle, the previous analysis can be recast
to examine stability to perturbations at any angle η < 90◦. If the planform function
h0(x, y) (6.8) is modified to be

h0(x, y) = A1e
iαx + A2e

−iαx + B1e
iα(−x cos η+y sin η) + B2e

iα(x cos η−y sin η) (6.18)
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Figure 2. (a) Variation in coefficients ar (dashed line), cr − ar (dash-dot line) and dr − ar
(dash-dot-dot-dot line) with s in the case n = 4. For s < 2.361 travelling rolls are unstable to
perturbations at +90◦ as dr − ar > 0. (b) Value scrit(η) below which travelling rolls are unstable
to perturbations at an angle η. The dashed line is the asymptotic result scrit ≈ 16.1η−3/4.

the analysis of §§ 6.1–6.4 can be carried out (using maple for example) for arbitrary
η. For any fixed η there is a critical value scrit(η) below which travelling rolls are
unstable to perturbations at an angle η to the original rolls, see figure 2(b). Note that
scrit(η) tends to infinity as η → 0 and so at any fixed s, travelling rolls are unstable
to perturbations at small enough angles. This agrees with calculations at finite σ and
Ta of the growth rates of perturbations at different angles to travelling roll solutions.
For small angles it appears that scrit(η) ∼ η−3/4 asymptotically. In conclusion, both
travelling and standing rolls are unstable near the onset of convection; there are no
stable two-dimensional solutions to (5.1)–(5.4).

7. Weakly nonlinear theory for n = 1

The scaled equations that were derived in § 4 do not apply in the limit (2.6)
corresponding to n = 1 since the preferred wavenumber remains O(1) in the limit
and the scaling arguments break down. However, this limit is of interest since the
transition line between regions of stable travelling and standing rolls asymptotes to a
curve of the form σTa1/2 = const at high Ta (Knobloch & Silber 1990). The weakly
nonlinear behaviour in this limit has been partially investigated by Bassom & Zhang
(1998) but they were able to deduce only that travelling rolls bifurcate supercritically
at onset. In fact, their analysis can be extended to compute the relative stability of
travelling and standing rolls, which are a priori equally possible candidates for the
form of two-dimensional oscillatory convection near onset. The relevant symmetry
group of the problem is O(2): the (two-dimensional, i.e. no y-dependence) infinite
plane layer is invariant under a circle of translations in the x-direction (due to
the imposition of periodicity) and a half-turn rotation about the z-axis which takes
x→ −x. We propose, at leading order, a solution planform which takes the form of
a superposition of travelling rolls with amplitudes A1 and A2:

(φ0,1, ψ0,1, θ0,1) =

(
i cos πz,

sin πz

α
,
α sin πz

α2 − iω0

)
h0(x)e−iω0t0 + c.c., (7.1)

h0(x) = A1e
iαx + A2e

−iαx. (7.2)
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Following through the modified perturbation expansion we generically derive the
normal form for a Hopf bifurcation with O(2) symmetry from the solvability condition
at third order:

Ȧ1 = A1[µ+ iω + a|A1|2 + b|A2|2], (7.3)

Ȧ2 = A2[µ+ iω + a|A2|2 + b|A1|2]. (7.4)

We find that ar < 0 for all s, see figure 3(a). This result was obtained also by Bassom
& Zhang (1998) by performing a double expansion similar to that given in § 6.
Hence travelling rolls (solutions of the form |A1|2 = −µ/ar , A2 = 0) always bifurcate
supercritically. As before, a subscript r denotes the real part of the coefficient. To test
the relative stability of travelling and standing rolls it is necessary also to calculate
br . The calculation of br shows, in agreement with Knobloch & Silber (1990), that
there is a critical value of s above which travelling rolls are stable and below which
standing rolls are preferred. The stability criteria for travelling rolls are plotted in
figure 3(a): all stability curves must be negative for stability at a given value of s.
When s < sc ≈ 52.48, we find br−ar > 0 (the dashed curve in figure 3a) which implies
travelling rolls are unstable with respect to standing rolls; when s > sc the inequality
is reversed and travelling rolls are stable with respect to standing rolls.

Moreover, as in the case n = 4, we can analyse the stability of both travelling and
standing rolls to perturbations in the y-directions by including terms for modes B1 and
B2 in the planform expression (7.2) and working through the perturbation expansion
again. The resulting stability theory is given by Knobloch & Silber (1992). It turns
out that travelling rolls are always unstable to these y-direction perturbations (the
dot-dashed lines in figure 3(a)), and on a faster timescale than that associated with
the eigenvalue which determines whether travelling or standing rolls are preferred!
The values of cr and dr (the real parts of the coefficients of the terms A1|B1|2 and
A1|B2|2 in the A1 equation) appear at O(ε3) in the perturbation expansion where
the evolution timescale is t0,2 = ε2t, but the values of ar and br can only be found
by continuing to O(Eε3) (as detailed by Bassom & Zhang 1998) where the relevant
timescale is t1,2 = Eε2t. Hence the coefficients ar and br are formally a factor of E
smaller than cr and dr . To summarize, perturbations in the y-direction are of much
greater importance than the relative stability of travelling and standing rolls.

The solid curve in figure 3(b) is always negative, showing that standing rolls also
bifurcate supercritically for all s. The enlargement in figure 3(c) shows that over a very
small range, 45 < s < 70, standing rolls are unstable to three-dimensional patterns; for
s > sc the dashed line indicates that standing rolls are also unstable to travelling rolls.

An interesting feature of figure 3(a) is that cr = −dr at leading-order. This may be
explained by considering the effect of changing y → −y and t → −t in the leading-
order governing equations for the case n = 1 (derived by taking the double curl of the
momentum equation (2.1) to eliminate the pressure, writing σ = sE, and ignoring the
higher-order terms which comprise the right-hand side). Equation (2.1) then becomes

∂t∇2u+ s∂zω = ∇× ∇× (ω× u). (7.5)

The change (y, t)→ (−y,−t) implies that (∂x, ∂y, ∂z, ux, uy, uz)→ (∂x,−∂y, ∂z, ux,−uy, uz)
and hence (ωx, ωy, ωz) → (−ωx, ωy,−ωz). Only the second component of ω × u
changes sign, hence the second component of the right-hand side changes sign under
(y, t)→ (−y,−t). However, the first and third components are the ones which change
sign on the left-hand side of (7.5). Hence the transformation (y, t) → (−y,−t) is
equivalent to introducing a minus sign into the nonlinear term on the right-hand side.
Consideration of the nonlinear terms at each order in the perturbation expansion
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Figure 3. (a) Stability criteria for travelling rolls in the limit n = 1: ar (solid line) and br − ar
(dashed line) are determined at O(Eε3), but cr (dash-dot line) and dr (dash-dot-dot-dot line) are
determined at O(ε3). Travelling rolls are stable with respect to standing rolls when br − ar < 0. The
values of cr and dr have been scaled up by a factor of 10 for ease of display. (b) Stability criteria
for standing rolls using the results of Knobloch & Silber (1992): ar (solid line), ar − br (dashed line)
and −fr ≡ cr + dr − ar − br (dash-dot line) are determined at O(Eε3); |e|2 − |f|2 (dash-dot-dot-dot
line) is determined at O(ε3). (c) Enlargement of (b) in the range 30 6 s 6 100.

shows that changing the sign of the nonlinear term on the right-hand side does not
affect either the value of the coefficients cr and dr or the evolution equation for A1

derived at O(ε3). However, since this sign change is equivalent to (y, t) → (−y,−t),
the amplitude equation that is derived at third order in ε, analogous to (6.10), must
also be invariant under the sign change of y and t. This implies that changing the
sign of the time derivative and exchanging B1 and B2 leaves the evolution equation
unchanged, i.e.

∂t0,2A1 = A1[cr|B1|2 + dr|B2|2] = −A1[cr|B2|2 + dr|B1|2].
Invariance implies that cr = −dr which is clearly demonstrated by figure 3(a). This
symmetry is broken by the addition of the diffusion and buoyancy terms at higher
orders, but leads to the general conclusion that throughout regime III travelling rolls
are never stable to perturbations both at +90◦ and −90◦. This is in contrast to the
results for standing rolls which are stable to planforms containing these modes in
the n = 1 limit when s is low enough, as shown by figure 3(b). Further details of the
complex dynamics present at finite σ and Ta are given in Dawes (2000).
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Figure 4. Comparison of the time-averaged mean temperature profile from a fully resolved
three-dimensional numerical simulation of Julien et al. (1998) in the limit of rapid rotation, n = ∞.
Numerical results at a scaled Rayleigh number R̃ = 20 (R̃c = 8.7) are indicated by �. The solid line
is the result of (5.9) at the same Nusselt number Nu = 4.0.

8. Comparison with experimental work
The preceding analysis shows that three contrasting asymptotic theories dominate

different regions of the (σ,Ta)-plane: the limit of rapid rotation only (n = ∞), the
case n = 4, and the case n = 1 where the critical wavenumber at onset remains O(1).
The leading-order equations (5.1)–(5.4) in the limiting case n = 4 are applicable when
the parameter s is O(1), say 0.1 6 s 6 10.0 and the lower-order corrections to (5.1)–
(5.4) are negligible. Since these corrections are a factor E1/4 smaller, we formally
require both 10−4 6 s4 = σ4Ta1/2 6 104 and Ta1/2 > 104 (requiring E1/4 6 0.1).
These conditions yield a range of Ta for a given σ. When σ = 0.025 this indicates
104 6 Ta1/2 6 3× 1010 as an approximate range of Ta within which the n = 4 limit is
valid. At a given Prandtl number, the dynamics at Taylor numbers outside this range
would be better described by the cases n = ∞ (Julien & Knobloch 1999) or n = 1
(Bassom & Zhang 1998).

After a thorough search of the literature on rotating convection there appear to be
only two sets of laboratory experiments which report detailed measurements on a low
Prandtl number fluid (mercury): those of Rossby (1969) and Fauve, Laroche & Perrin
(1985). Throughout the 1950s and 1960s a number of rotating convection experiments
were carried out, but these focused on determination of the critical Rayleigh number
for the onset of convection and did not explore behaviour much above onset. Rossby’s
experiments encompass a range of Taylor numbers 103 < Ta < 109 while those of
Fauve et al. (1985) span only 104 < Ta < 105. The small number of Rossby’s results
which do lie in the range of validity defined above for n = 4 show a much slower rise in
the Nusselt number with R/Rc than that predicted by (5.14). As his photographs and
observations make clear, convection becomes irregularly three-dimensional almost
immediately above onset. Fauve et al. noted hysteresis in their experimental data and
described their results in terms of a codimension-2 pitchfork–Hopf bifurcation. For
this description to be valid the rotation rate cannot be assumed to be large, which
suggests that this hysteresis phenomenon cannot be captured by an asymptotic theory.
There is a clear need for more extensive experimental data at higher rotation rates.

Numerical simulations of convection in the limit of rapid rotation (n = ∞) with
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σ = 1 have been carried out by Julien et al. (1998). These show convergence to a
statistically steady state comprising vortices which extend almost the entire depth of
the layer. A comparison with (5.14) of the resulting mean temperature profile obtained
numerically for a Nusselt number Nu = 4.0 at R/Rc = 2.3 (personal communication
from Dr K. Julien) is given in figure 4. In the limit of rapid rotation the diffusive
terms remain part of the leading-order equations of motion. It seems reasonable that
their presence causes the resulting mean temperature profile to be less angular than
that suggested by (5.14) at the same Nusselt number.

9. Discussion and conclusions
We have examined rapidly rotating convection at low Prandtl number. By tak-

ing distinguished limits and scaling the velocity field, temperature field, length and
timescales and physical parameters appropriately we have derived scaled equations
which describe the asymptotic dynamics of convection.

The scaled equations are tractable analytically because they contain very few
nonlinear terms: moreover the u · ∇u term does not contribute at all for particular
planforms which depend on only one horizontal wavenumber. At leading order the
rapid rotation is balanced by the time derivative part of the inertial term. This balance
of linear terms leads to oscillatory convection with a fast timescale. The buoyancy
term is balanced by diffusion at next order, both these processes evolving on a
slower timescale. The dominant nonlinearity comes from the equation for the mean
temperature profile. The results of § 3 show that the properties of convection near onset
are independent of the imposed vertical boundary conditions. In making the poloidal–
toroidal decomposition we have neglected a possible mean flow (U(z, t), V (z, t), 0). This
is justified by the fact that in the limit (2.6) there is no consistent scaling which couples
the mean flow terms into the leading-order equations.

The relative importance of the diffusive terms and subdominant nonlinearities
is important, and we divide the asymptotic behaviour into three regimes of which
the most interesting and useful one (the case n = 4) is where these subdominant
terms balance. A fully nonlinear solution for the vertical structure and heat transport
through the layer can be obtained analytically at leading order – this has not been
found possible in previous related work.

The two central analytic results of this paper (5.9) and (5.14), formally for fully
nonlinear convection, are independent of the parameters n > 1 and s which determine
the distinguished limit. This independence motivates the claim that they are widely
applicable: indeed convection experiments on a wide range of fluids with or without
rotation show mean temperature profiles similar to figure 1. Any suitable analytic ex-
pression has not, to the best of the author’s knowledge, been derived for it previously.

Weakly nonlinear analysis of the scaled equations in the cases n = 4 and n = 1
confirms the asymptotic behaviour of results on pattern selection at onset at finite
Taylor number and Prandtl number. The curve which forms the stability boundary
of two-dimensional travelling rolls to perturbations at a fixed angle η scales as
σ4Ta1/2 = const for large Ta , but the constant increases without bound as η → 0.
From Dawes (2000) we know that standing rolls are unstable to travelling rolls in
this regime; within the region of the (σ,Ta)-plane where the limit corresponding to
n = 4 applies we do not expect two-dimensional solutions to be stable. This is in
agreement with experimental results. The relative importance of the subdominant
nonlinear terms and the diffusive terms plays a key role in determining the growth
rates of Küppers–Lortz type instabilities of travelling rolls.
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The case n = 1 identifies the transition between Küppers–Lortz unstable travelling
rolls and stable standing rolls. This transition was not captured by the analysis of
Bassom & Zhang (1998) since they did not compute the full amplitude equations
describing the Hopf bifurcation with O(2) symmetry that takes place: they omitted
the term A1|A2|2 in (7.3) and the evolution equation for A2 (7.4). Moreover, we have
considered the stability of travelling and standing rolls to perturbations in modes at
right-angles to them.

Further analytical work on this problem is planned, possibly including investigation
of the oscillatory analogue of the work of Cox & Matthews (2000) on small-angle
instabilities of steady rolls. Much interest has also been generated in similar scaling
arguments applied to thermal convection in a vertical magnetic field (Julien, Knobloch
& Tobias 1999; Matthews 1999). It is possible that these ideas could be applied
profitably there.

Experiments on rotating convection at low Prandtl number show a plethora of
interesting phenomena: effects introduced by lateral boundaries include allowing
‘wall-modes’ of convective motion which allow convective heat transport at Rayleigh
numbers below that predicted from the linear theory for an infinite layer (Goldstein
et al. 1994) and the spontaneous nucleation of defects at the walls which then break
up a pattern of rolls (Hu, Ecke & Ahlers 1997). Encouragingly, the experiments
of Pfotenhauer et al. (1984) using liquid 4He (σ = 0.49) indicate that the initial
slope of the Nu–R/Rc curve increases rapidly to a value of approximately 2 as the

rotation rate increases from zero to Ta1/2 ≈ 900. It is hoped that this theoretical
work will contribute to the understanding and interpretation of experimental results:
experiments with liquid metals (mercury, liquid sodium or gallium) or cooled gas
mixtures (helium, helium–xenon or hydrogen–xenon) are able to access the required
parameter ranges and should give further physical insights into this problem.

I have benefited greatly from discussions with Michael Proctor, Alastair Rucklidge
and Steve Tobias. I am very grateful to Professor S. Fauve, Dr K. Julien and Professor
H. T. Rossby for supplying me with experimental results and answering queries. I
would also like to thank two anonymous referees for many comments which have
improved the presentation and content of this work. This work was funded by the
UK EPSRC.

Appendix A. Nonlinear terms
The full expressions for Nφ(φ, ψ), Nψ(φ, ψ) and NT (φ, ψ, T ) are included here for

completeness. They are defined by (2.14)–(2.16) in terms of the poloidal and toroidal
components φ and ψ. We define the horizontal Jacobian J[ f, g] ≡ ∂xf∂yg − ∂yf∂xg.

Nφ(φ, ψ) = −J[φ,∇2
Hφ]− J[∇2ψ,∇2

Hψ] + ∇H (∇2
Hφ) · ∇H (∂zψ)

−∇H (∂zφ) · ∇H (∇2
Hψ)− ∇2

Hψ∇2
H (∂zφ) + ∇2

Hφ∇2
H (∂zψ), (A 1)

Nψ(φ, ψ) = −∇2{J[φ,∇2φ] + J[∂zφ, ∂zψ]− ∇Hφ · ∇H (∂zφ)

−∇H (∂zψ) · ∇H (∇2ψ)} − ∂z{J[∂zψ,∇2φ]− J[φ,∇2∂zψ]

−2J[∂zφ,∇2ψ] + ∇Hφ · ∇H (∇2φ) + ∇H (∂zψ) · ∇H (∇2∂zψ)

+∇2
Hψ∇2(∇2

Hψ) + |∇H (∂zφ)|2 + |∇H (∇2ψ)|2 + (∇2
Hφ)2}, (A 2)
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NT (φ, ψ, T ) = −J[φ,T ] + ∇H (∂zψ) · ∇HT − ∇2
Hψ∂zT . (A 3)

After the scalings of § 4, different terms in (A 1)–(A 3) appear at different orders in
the asymptotic expansion: those contained in the subdominant terms M0 and M1 are
given below. For convenience, M0 and M1 are defined containing factors of 1/s:

M0(φ, ψ) =
1

s

[
(∇2

Hφ)∇2
H∂zψ − (∇2

Hψ)∇2
H∂zφ+ ∇H (∇2

Hφ) · ∇H (∂zψ)

−∇H (∂zφ) · ∇H (∇2
Hψ)

]
, (A 4)

M1(φ, ψ) =
1

s

[∇2
H (∇Hφ · ∇H∂zφ) + ∇2

H (∇H (∂zψ) · ∇H (∇2
Hψ))

−∂z{(∇2
Hψ)∇4

Hψ + (∇Hφ) · ∇H (∇2
Hφ) + |∇H (∇2

Hψ)|2 + (∇2
Hφ)2}] . (A 5)

Appendix B. Vertical structure in the rigid boundary case
Using the scalings (2.7)–(2.9), the roots of P (λ) are found to be

λ2
0 = (α̃2 + iω̃)E2γ + O(1), (B 1)

λ2
1 = − ω̃

2α̃2

s2
+ O(E−2γ), (B 2)

λ2
2 = iE−1 + O(E−1−γ), (B 3)

λ2
3 = −iE−1 + O(E−1−γ). (B 4)

The no-slip boundary conditions (3.2) demand that

3∑
j=0

Aj =

3∑
j=0

Aj
(λ2
j − α2 − iω)σTa1/2

σ(λ2
j − α2)− iω

βj = 0, (B 5)

3∑
j=0

Aj
α2 + iω − λ2

j

α2
=

3∑
j=0

Aj
α2 + iω − λ2

j

α2
βj = 0, (B 6)

where βj = λj tanh λj/2. In the limit (2.6) the limiting values of β0, β2 and β3 are
easily computed in terms of the λj . The limiting value of β1 is computed from the
requirement that the determinant of the 4×4 matrix defined by (B 5) and (B 6) vanish.
After substituting the limiting values of β0, β2 and β3 we obtain at leading order:

det


1 1 1 1

O(1) −(α̃2 + iω̃)E2γ iE−1 −iE−1

O(Eγ) −β1(α̃
2 + iω̃)E2γ (iE−1)3/2 (−iE−1)3/2

O(E−γ) −iβ1(α̃
2 + iω̃)/ω̃ i1/2E−3/2−3γ/s (−i)1/2E−3/2−3γ/s

 = 0

which yields

β1 = − iω̃
√

2

s
E−γ−1/2 + O(E−γ)
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and the result (3.3) follows. In the case n = 1 where the critical wavenumber α and
the frequency ω are O(1) in the limit (2.6), the roots of P (λ) are found to be

λ2
0 = 1

2
(iω − δ2 + [δ4 + 4π2α2 − ω2 + 2iω(π2 − α2)]1/2) + O(E), (B 7)

λ2
1 = 1

2
(iω − δ2 − [δ4 + 4π2α2 − ω2 + 2iω(π2 − α2)]1/2) + O(E), (B 8)

λ2
2 = i

(ω
s

+ s
)
E−1 + O(1), (B 9)

λ2
3 = i

(ω
s
− s
)
E−1 + O(1), (B 10)

where δ2 ≡ α2 + π2.
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